Q1 - [(Q3 - Q1) X 1. 5]=13650

مقادیر با مفهوم بوده و دور افتاده نیست

دیرکرد جریمه

Q1=0, Q3=0, IQR=0
Q3 + [(Q3 - Q1) X 1. 5]=0
Q1 - [(Q3 - Q1) X 1. 5]=0

مقادیر با مفهوم بوده و دور افتاده نیست

تخفیف عدم خسارت

Q1=610080, Q3=1495200, IQR=885120
Q3 + [(Q3 - Q1) X 1. 5]=2822880
Q1 - [(Q3 - Q1) X 1. 5]=717600

مقادیر با مفهوم بوده و دور افتاده نیست

۳-۲-۸-انبوهش داده
با ادغام کردن داده های صدور و خسارت به خلق ویژگیهای[۲۸] جدیدی دست زده ایم. چون داده ها در دو فایل جدا گانه بوده و حجم داده زیاد بوده است برای ادغام از پرس و جوی نرم افزار Microsoft Access استفاده شد. برای تشخیص بیمه نامه های خسارت دیده از فیلد شماره بیمه نامه که در هردوفایل مشترک بود استفاده کردیم.

( اینجا فقط تکه ای از متن درج شده است. برای خرید متن کامل فایل پایان نامه با فرمت ورد می توانید به سایت feko.ir مراجعه نمایید و کلمه کلیدی مورد نظرتان را جستجو نمایید. )

۳-۲-۹- ایجاد ویژگی دسته
در این مرحله پس از ادغام ویژگی های مختلف اقدام به ایجاد یک فیلد برای تمام رکوردهایی که منجر به خسارت شده اند می نماییم. این فیلد در الگوریتمهای دسته بندی مورد استفاده قرار خواهد گرفت. برای انجام این کار از یک پر و جوی Microsoft Access استفاده میکنیم.
۳-۲-۱۰-تبدیل داده
جهت استفاده کاربردی تر از برخی ویژگی ها باید مقادیر آن ویژگی تغییر کند. یک نمونه از این کار تغییر مقدار ویژگی ” دیرکرد جریمه ” است. مقدار این فیلد مبلغ جریمه دیرکرد بیمه گذار بوده است که با تقسیم این مبلغ به عدد ۱۳۰۰۰ تعداد روزهای تاخیر در تمدید بیمه نامه افراد مشخص می شود، زیرا به ازای هر روز تاخیر مبلغی حدود ۱۳۰۰۰ریال در سال ۱۳۹۰ به عنوان جریمه دیرکرد از فرد متقاضی بیمه نامه دریافت می گردید.
۳-۲-۱۱-انتقال داده به محیط داده کاوی
پس از انجام پاکسازی، داده باید به محیط داده کاوی منتقل شود. در خلال این انتقال نیاز به تعریف و یا تغییر نوع داده وجود دارد. در طول این تغییر داده ممکن است مقادیری از داده ها بدلیل ناسازگاری و یا دلایل مشابه به عنوان داده از دست رفته مشخص گردد و یا داده از دست رفته ای که قبلاً قابل تشخیص نبوده مشخص گردد. (شکل ۳-۱)
شکل شماره۳-۱: داده از دست رفته فیلد” نوع بیمه ” پس از انتقال به محیط داده کاوی
۳-۲-۱۲-انواع داده تعیین شده
پس از انتقال داده به محیط داده کاوی، هر ویژگی به نوع خاصی از داده توسط نرم افزار تشخیص داده شد. پس از آن نوع داده تشخیصی مورد بررسی قرار گرفت و اشتباهات پیش آمده تصحیح گردیدند. همچنین گروهی از ویژگی ها که به هیچ نوع داده ای اختصاص داده نشده بود بصورت دستی به بهترین نوع ممکن اختصاص داده شد. چون برخورد الگوریتم ها با انواع داده ها متفاوت است با توجه به موضوع پژوهش بهترین نوع داده که بتواند نسبت به الگوریتم موثرترواقع شود برای هر ویژگی درنظر گرفته شد.
جدول نوع داده های مورد استفاده در این پژوهش به شرح جدول ۳-۷ است:
جدول ۳-۷: انواع داده استفاده شده

نام فیلد

نوع فیلد

ماه-سال-کدنمایندگی‌صادرکننده‌اصلی- تعداد زیاندیدگان مصدوم- نوع‌پلاک- ظ‌رفیت- تعدادسیلندر- سال ساخت- مدت بیمه- نمایندگی‌محل‌صدور- تعداد زیاندیدگان متوفی-حق‌بیمه‌ثالث‌قانونی-تعهدمازاد-تعهدبدنی-تعهدمالی

Integer

- نوع‌بیمه- شرح‌مورداستفاده- بیمه گر زیاندیده اول نوع‌مستند۱- سیستم نوع‌وسیله‌نقلیه- نام‌سازمان-دولتی

polynominal

دیرکردجریمه-کداضافه‌نرخ‌حق‌بیمه-حق‌بیمه‌دریافتی-عوارض‌ماده۹۲-مالیات-حق‌بیمه‌سرنشین-حق‌بیمه‌مازاد- تخفیف گروهی-تخفیف عدم خسارت- مبلغ خسارت

real

بیمه‌نامه‌سال‌قبل- کارمندی- صادره‌توسط شعبه- خسارتی؟

موضوعات: بدون موضوع  لینک ثابت